Automatic Patch Generation Learned from Human-Written Patches

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim

Hong Kong University of Science and Technology, China

Track: Technical Research
Session: Program Repair
Patch generation is an essential software maintenance task because most software systems inevitably have bugs that need to be fixed. Unfortunately, human resources are often insufficient to fix all reported and known bugs. To address this issue, several automated patch generation techniques have been proposed. In particular, a genetic-programming-based patch generation technique, GenProg, proposed by Weimer et al., has shown promising results. However, these techniques can generate nonsensical patches due to the randomness of their mutation operations. To address this limitation, we propose a novel patch generation approach, Pattern-based Automatic program Repair (PAR), using fix patterns learned from existing human-written patches. We manually inspected more than 60,000 human-written patches and found there are several common fix patterns. Our approach leverages these fix patterns to generate program patches automatically. We experimentally evaluated PAR on 119 real bugs. In addition, a user study involving 89 students and 164 developers confirmed that patches generated by our approach are more acceptable than those generated by GenProg. PAR successfully generated patches for 27 out of 119 bugs, while GenProg was successful for only 16 bugs.