Research-Based Innovation with Industry: Project Experience and Lessons Learned

Lionel Briand, IEEE Fellow
FNR PEARL chair

May 18th, 2013

MISE 2013, San Francisco, CA
Talk Objectives

• Identify success criteria in research projects with industrial collaborators
• Share concrete and practical guidelines
• Illustrated with recent, personal projects
Acknowledgements

- Shiva Nejati
- Mehrdad Sabetzadeh
- Nadia Alshahwan
- Domenico Bianculli
- Morayo Adedjouma
- Elizabeta Fourneret
- Reza Matinnejad
- Dan Di Nardo
- Chetan Arora
- Razieh Bejati
- ...
Luxembourg

- Smaller than Rhode Island
- One of the wealthiest countries in the world
- Young research focused university (2003) and Ph.D. programs (2007)
- ICT security and reliability is a national research priority
- Priorities implemented as interdisciplinary centres
- International city and university
- Three official languages: English, French, German
SnT Centre

- SnT centre, Est. 2009: Interdisciplinary, ICT security, reliability, and trust (SnT)
- 180 scientists and Ph.D. candidates, 20 industry partners
- 15 scientists (Research scientists, associates, and PhD candidates)
- Industry-relevant research on system dependability: security, safety, reliability
- Four partners: Cetrel, CTIE, Delphi, SES, …
Engineering Research

• “Engineering: The application of scientific and mathematical principles to practical ends such as the design, manufacture, and operation of efficient and economical structures, machines, processes, and systems.” (American Heritage Dictionary)

• Engineering research: Innovative engineering solutions
 – Problem driven
 – Real world requirements
 – Scalability
 – Human factors, where it matters
 – Economic tradeoffs and cost-benefit analysis
 – Actually doing it on real artifacts, not just talking about it
Motivation

• Closer industry involvement in MDE research:
 • Research informed by practice
 • Well-defined problems in context
 • Realistic evaluation
 • Long term industrial collaborations => Impact
 • Focus on pain points in industry

• Lessen dichotomy between research and innovation

• Research-driven innovation

• How do we do that?
Embracing the Engineering Side of Software Engineering

Lionel Briand

I HAVE NOW been a professional researcher in software engineering for roughly 20 years. Throughout that time, I've worked at universities and in research institutes and collaborated on research projects with 30-odd private companies and public institutions. Over the years, I have increasingly questioned and reflected on the impact and usefulness of my research work and, as a result, made it a priority to combine my research with a genuine involvement in actual engineering problems. This short piece aims to reflect on my experiences in performing industry-relevant software engineering research across several countries and institutions.

Not So Hot Anymore

I suppose a logical start for this article is to assess, albeit concisely, the current state of software engineering research. As software engineering is widely taught in many universities, due in large part to a strong demand for software engineers in industry, the number of software engineering academics is substantial. The Journal of Systems and Software ranks researchers every year, usually accounting for roughly 4,000 individuals actively publishing in major journals.

When I started my career, software engineering was definitely a hot topic in academia: funding was plentiful, and universities and research institutes were hiring in record numbers. This clearly isn’t the case anymore. Public funding for software engineering research has at best stagnated, and in many countries, declined significantly. Hiring for research positions is limited and falls far below the number of software engineering graduates seeking research careers. Industry attendance at scientific software engineering conferences is roughly 10 percent, including the scientists from corporate research centers. Adding insult to injury, in many academic and industry circles, software engineering research isn’t even considered to be a real scientific discipline. I’ll spare you the numerous unpleasant comments about the credibility and scientific underpinning of software engineering research that I’ve heard over the years.

This situation isn’t due to the subject matter’s lack of relevance. Software systems are pervasive in all industry sectors and have become increasingly complex and critical. The software engineering profession repeatedly tops job-ranking surveys. In many cases, most of a product’s innovation lies in its software components—for an example, think of the automotive industry. In all my recent industry collaborations, I’ve observed that all the issues and challenges traditionally faced in software development are becoming more acute.

So how can we explain the paradox of being both highly relevant and increasingly underfunded and discredited?

Looking for Some Answers

Like other disciplines before us, because we're a young and still-maturing engineering field, we lack the credibility of more

continued on p. 93
Related work

• [Mohagheghi & Dehlen 2008], [Hutchinson et al. 2011]:
 • Investigate success and failure factors for MDE in industry
 • Methods: literature reviews, surveys, and interviews

• [Selic 2012]:
 • Reflection on both technical and non-technical considerations to improve MDE penetration in the industry

• Our focus:
 • MDE research in collaboration with the industry
 • Personal experience across many projects
 • Illustrated with (detailed) examples
MDE Projects Overview (< 5 years)

<table>
<thead>
<tr>
<th>Company</th>
<th>Domain</th>
<th>Objective</th>
<th>Notation</th>
<th>Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABB</td>
<td>Robot controller</td>
<td>Testing</td>
<td>UML</td>
<td>Model analysis for coverage criteria</td>
</tr>
<tr>
<td>Cisco</td>
<td>Video conference</td>
<td>Testing (robustness)</td>
<td>UML profile</td>
<td>Metaheuristic search</td>
</tr>
<tr>
<td>Kongsberg Maritime</td>
<td>Fire and gas safety control system</td>
<td>Certification</td>
<td>SysML + traceability</td>
<td>Model slicing algorithm</td>
</tr>
<tr>
<td>Kongsberg Maritime</td>
<td>Oil&gas, safety critical drivers</td>
<td>CPU usage analysis</td>
<td>UML+MARTE</td>
<td>Constraint Solver</td>
</tr>
<tr>
<td>FMC</td>
<td>Subsea system</td>
<td>Automated configuration</td>
<td>UML profile</td>
<td>Constraint solver</td>
</tr>
<tr>
<td>WesternGeco</td>
<td>Marine seismic acquisition</td>
<td>Testing</td>
<td>UML profile + MARTE</td>
<td>Metaheuristic search</td>
</tr>
<tr>
<td>DNV</td>
<td>Marine and Energy, certification body</td>
<td>Compliance with safety standards</td>
<td>UML profile</td>
<td>Constraint verification</td>
</tr>
<tr>
<td>SES</td>
<td>Satellite operator</td>
<td>Testing</td>
<td>UML profile</td>
<td>Metaheuristic search</td>
</tr>
<tr>
<td>Delphi</td>
<td>Automotive systems</td>
<td>Testing (safety + performance)</td>
<td>Matlab/Simulink</td>
<td>Metaheuristic search</td>
</tr>
<tr>
<td>Lux. Tax department</td>
<td>Legal & financial</td>
<td>Legal Req. QA & testing</td>
<td>Under investigation</td>
<td>Under investigation</td>
</tr>
</tbody>
</table>
Industrial collaboration model

• Adapted from [Gorschek et al 2006]

• Similar to action research
 • Solving a real-world problem while studying the experience of solving it [Davison et al 2004]

• Difference with action research:
 • More conservative in terms of intervention
 • Researchers are not the agents of change
Defining the research problems

Lesson: The stated problem is often a manifestation of one or more fundamental problems

- An early observational study can identify and decompose these fundamental problems

Example: Integration problem in subsea/automotive systems
- Investigation pointed to root causes of “integration problems”
- Subsea: Configuration
- Automotive: Balancing CPU usage

- Observational study also essential for mapping the terms used by an industry partner to the terms used in the research literature
Subsea Integrated Control Systems

Subsea Christmas (Xmas) tree

Production
Injection

http://subseaworldnews.com/

Integration problems!
Model-Based Configuration

Product-family modeling → Generic model of reference architecture → Automated configuration

- Instant validation
- Automated guidance
- Value inference

Configuration engineer
Integration in Power Train Systems

AUTOSAR Models

OEM (Original Equipment Manufacturer)

sw runnables

Glue

sw runnables

DELPHI (Automotive Systems)

www.robson.m3Rlin.org/cars
Balancing CPU Usage Across OS Cycles

• Challenge
 – Integration problems!
 – Many OS tasks and their many runnables run within a limited available CPU time
 • The execution time of the runnables may exceed the OS cycles

• Our goal
 – Reducing the maximum CPU time used per time slot to be able to
 • Reduce the possibility of overloading the CPU in practice
 • Minimize the hardware cost
 • Enable addition of new functions incrementally
Contextual factors

Lesson: Context matters!

- Contextual factors (incl. assumptions) determine
 - what is feasible and what is not
 - what is cost-effective and what is not
 - what can be reused from the existing literature and what needs a novel solution

Examples:

- Automotive: Use of Matlab/Simulink, test phases
- Model-driven Testing based on Matlab/Simulink

- Satellite: Many stakeholders, requirements in natural language
- Quality assurance for natural language requirements?
Satellite Ground Control Systems

- MOC (Mission Operations Centre) system in EDRS (European Data Relay Satellite)
Many stakeholders, Three Tier Requirements

- Many opportunities for misunderstanding and changes
- Focus on automated requirements quality assurance
- Natural language requirements
Applying Templates

• Motivation: Requirements statements are often expected to follow a sentence template to maximize comprehension and minimize ambiguity

• Example [Rupp 2009]

• Manually checking of conformance to templates is very tedious
• Especially in the context of many stakeholders and changes
• Questions: Can conformance to templates be checked automatically? Do we need a glossary of key phrases (domain concepts)?
Syntactic checking (continued)

Example:

The Monitoring and Control component shall provide the system operator with the ability to configure the database polling interval.

Conforms to template? **Yes**

- Commercial tools already exist for syntax checking **BUT** ...
- Results are poor when the glossary terms have not been specified
- … research suggests that most projects have substantial omissions in glossaries, particularly in early stages

- **Our goal:** syntax checking with **minimal** reliance on glossaries
- … and provide recommendations for glossary terms
Solu8on Overview

Glossary of key phrases not necessary
Tool snapshot
Context Factors?

- Natural languages requirements
- Many stakeholders
- Frequent changes
- Requirements documents approved as contractually binding
- ...

Complexity and amount of software used on vehicles’ Electronic Control Units (ECUs) grow rapidly

Comfort and variety

More functions
Safety and reliability

Faster time-to-market

Greenhouse gas emission laws

Less fuel consumption
Three major software development stages in the automotive domain
MiL testing

Requirements

• The ultimate goal of MiL testing is to ensure that individual functions behave correctly and timely on any hardware configuration
• But is also a mechanism to select HiL test cases
Context Factors?

- Stages of testing
- Final testing stage extremely expensive and time consuming
- Systematic use of Matlab/Simulink at early stages
Improving domain understanding and communication

Lesson: Build a domain model as early as possible.

- Helps researchers better understand the domain
- An essential communication tool between partners and practitioners
- By product: Helps practitioners better organize, refine and share their knowledge

Examples:
- **Subsea:** 71 classes: 46 for software and 24 for hardware
- Captures SW-HW relationships, configurable parameters, variability points (60 – 80 person hours to build)
- **Tax law:** next
Subsea Domain Model (Using SimPL)

Figure 17: Extension to the class diagram in Figure 14, showing the variability points and configuration units.
Verification of Testing and Legal Requirements
Legal Requirements: Traceability

- Law
- System Requirements (Model, Constraints)
- Test Requirements (Model, Constraints, Tags)
- Tests
Analysis and Verification of Legal Requirements

- **Consistency checking of legal requirements**
 - The requirements are “interpretations” of the law and could therefore be inconsistent

- **Handling the constant evolution of the law**
 - How does the evolution of the law impact legal requirements and the developed system

- **Automated testing and run-time verification**
 - Identification of defects in the developed software both before and after deployment
Art. 2: Individuals are considered resident taxpayers if they have either their fiscal or habitual residence in the Grand Duchy. Individuals are considered non-resident taxpayers if they neither have their fiscal nor their habitual residence in the Grand Duchy and if they have local income within the meaning of section 156.

Resident taxpayers are subject to income tax because of their income, both local and foreign.

Non-resident taxpayers are subject to income tax only because of their local income within the meaning of section 156 below.
Questions for Legal Experts

• Many interesting questions arise during modeling as the result of following a systematic process:

• Examples:

 • How many fiscal and habitual residences can a tax payer have?
 • Multiplicities over associations between taxpayer and the relevant concepts

 • What is local income:
 • Do we refer to income paid by a Luxembourgish company? or
 • to income earned over work rendered in Luxembourg?

Important as in early stages, researchers need to mentor by doing what they preach!
Considerations about input

Lesson: Input models should be feasible to build!

- The input has to match the expertise, culture, and processes at the industry partner

Lesson: Use standardized notations when possible

- Allows building on existing tools
- Avoids technology lock-in
- Reduces communication issues in a multi-organization setting

Example: safety-critical drivers in fire & gas monitoring

- SysML was used as the basis for modeling
- A general methodology was developed and later simplified according to project needs and expertise of the partner
- Tool support was developed over a short time building on Enterprise Architect and its SysML plugin
Gas & Fire Monitoring and Emergency Shutdown

Control Modules

Communicates commands and data between control modules and hardware

Expensive and lengthy certification by third party certifier
Observation Study of Certification Meetings

- System certified by third party
- Drivers are SIL 3
- Attended certification meetings (observational study)
- Meetings focused on requirements, architecture, and design documents
- Analyzed 66 distinct certification issues

Various forms of traceability mandated by standards

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Issues</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor</td>
<td>32</td>
<td>32%</td>
</tr>
<tr>
<td>Requirement Problems</td>
<td>7</td>
<td>7%</td>
</tr>
<tr>
<td>Poor traceability and structure</td>
<td>61</td>
<td>61%</td>
</tr>
</tbody>
</table>
Objectives, Language, Tool

Traceability Methodology to relate safety Requirements to design

Slicing Algorithm to extract a design slice relevant to a given safety requirement
Modeling Methodology

(I) System Requirement Specification
1. System Context Diagram
2. System-Level Requirements
3. Top-Level Use Cases

(II) System Design
Structural Models
4. System Decomposition
5. Communication Interfaces

Behavioural Models
6. Intra-Block Communication
7. Inter-Block Communication

Establish Traceability
8. Decompose System-Level Requirements
9. Re-express Requirements in terms of Block Operations and States
Automation: SafeSlice

- Support Establishing Traceability
- Generate Slices
- Inspection Assistant
Less than perfect input

Be prepared for less than perfect models

• Better models lead to better analysis results BUT …
• When scales are large, compromises often have to be made
• Question: Can the proposed approach still be useful in the presence of incompleteness and imprecision?

Example:
• CPU usage analysis for runnables in power train systems
• Can runnables run out of CPU?
• Can we minimize the risk?
• Imprecise WCET estimates
• Approximate knowledge of dependencies between runnables
• No possibility of using model checking (also related to previous points about feasibility of inputs)
We minimize the maximum CPU usage using runnables offsets (delay times)

Inserting runnables’ offsets

Offsets have to be chosen such that
the maximum CPU usage per time slot is minimized, and further,
the runnables respect their period
the runnables respect the OS cycles
the runnables satisfy their synchronization constraints
Meta heuristic search algorithms

- The objective function is the max CPU usage of a 2s-simulation of runnables
- Single-state search algorithms for discrete spaces (e.g., Tabu)
- The search modifies one offset at a time, and updates other offsets only if timing constraints are violated
- Used restart option to make them more explorative

Case Study: an automotive software system with 430 runnables

Running the system without offsets: 5.34 ms
Our optimized offset assignment: 2.13 ms
Lesson: **Train incrementally and based on needs**

- Long course on the whole (UML) is not a good idea!
- Training must match what the proposed solutions need

Lesson: **Use examples and illustrations from the industry partner’s application domain**

- Textbook examples are often met with yawns!
 - They have seen them all, several times!
- Quote from practitioner: “All these courses I attend use the ATM example. I want to see how UML is applied to our system”.

Example: **Data Acquisition Systems (Satellites)**

- Specific modeling methodology to support model-based testing in this domain
- Course on how to use UML and OCL with that methodology
- Used an actual DAS for training
Context: Data Acquisition Systems

Structured/Complex
Captures what happened while processing

Defines how input files are processed

Input file

DAS

Configurations

Log Files

Data
Modeling and Test Automation Approach

- Model structure and content of input, configuration, and output files
- Model their mapping
Early validation not synonymous with artificial validation

Validation in an artificial setting may have limited value or may be impossible

- Artificial validation is not useful if benchmarks are non-existent or are found to be unsuitable
- Contextual factors and level of complexity of the benchmarks should be a match for the project
- Meaningful artificial validation may even be impossible!

Example: MiL and HiL Testing ECU control software

- MiL testing requires actual Matlab/Simulink models
- Realistic search performance and fault detection
- HiL testing: dedicated hardware
Testing Controller and Plant Simulink Models

Desired value + Error → Controller (SUT) → Plant Model → System output

Actual value

Desired Value & Actual Value

(a) Liveness
(b) Smoothness
(c) Responsiveness

Desired Value & Actual Value

time

time

time

Liveness

x

\approx 0

Smoothness

v

<= w

Responsiveness

y >= z

Desired Value

Actual Value
MiL-Testing of Continuous Controllers

Objective Functions + Controller-plant model → Exploration → Overview Diagram → Domain Expert → List of Regions → Local Search → Test Scenarios

Graph Builder

<table>
<thead>
<tr>
<th>Final vs. Initial</th>
<th>Smoothness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>0.150</td>
</tr>
<tr>
<td></td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
</tr>
</tbody>
</table>

Initial Desired | Final Desired

Desired Value | Actual Value

0 | 1 | 2

0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0

0.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

50
Random Search vs. (1+1)EA
Example with Responsiveness Analysis

Random search might have done well with a simple artificial example
Choosing pilot studies

A good pilot study should be (1) representative, (2) feasible, and (3) relevant to current needs

- **Representative**: reflective of the characteristics of the industry partner’s systems
- **Feasible**: commensurate with pilot study resources
- **Relevant**: dealing with ongoing activities, planned future activities, or past activities with a horizon for future reuse
- **Quick Research impact!**

Example:
- Data Acquisition System: system currently under maintenance, transmitted files in typical range, real test suite
- ECU software: typical closed loop controller, being tested, in terms of configuration parameters
- Satellite ground control: Requirements were being defined, verified, and modified
Lesson: Mentor by doing!

- Be ready to provide a lot of help during realistic validation
 - To show commitment and set a good example
- Mentoring is paramount if the partner is not using MDE regularly
- Once practitioners become proficient, researchers’ help should be phased out

Example: Data Acquisition System
- Modeling tutorials
- Modeled an actual DAS with their help
- Mentoring on modeling other DAS
Lesson: Find internal champions for the solution.

- One or more champions are needed to:
 - spread the word about the research
 - connect the dots for the management
 - develop a strategy for integrating the solution
- Champions need to have developed a strong sense of trust in the researchers and the research
- Champions are usually people with a genuine intellectual interest in the topic
- You need to support them and make them excited and proud about what they do. Show your appreciation.
- It may take time to find the right person in the organization
Managing the relationship with industry partners

• Focus must be kept on recurring, long-lasting, and unsolved problems

• Expectations that cannot be met
 • Working as a consultant
 • Building professional tools

• Avoid short-term partnerships
 • At least 3 years of commitment to be expected
 • Bare minimum to conclude the research for a PhD
 • This usually tips the balance in favor of collaboration with larger organizations

• Communicate and follow up frequently
 • If you have not talked to a partner company in 3 months then something is wrong!
Publishing the results

• Possible tension between the research model and publication:
 • Industry is interested in end-to-end solutions
 • A solution often has different components, each belonging to a different (SE) research community
 • Not always easy to determine how to report and what venue to aim for
 • Example: Metaheuristic search and MDE in Delphi example on CPU balancing
• More thorny issue: interdisciplinary results!
• Many real-world problems are at a systems level
 • Software is only one part and may be difficult to isolate from hardware and mechanical devices
 • Interdisciplinary work is still notoriously hard to publish!
• More room is needed for systems engineering research
FAQ

• Aren’t your research results specific to an industry partner? How do they generalize?
 • SE solutions are generally not applicable across domains
 • Partners are not unique, they capture the practices of an industry
 • We are better off with solutions that apply to a domain, than solutions that have not shown to apply anywhere
 • Generalization comes from replications
 • Make your working assumptions explicit
• Aren’t we constraining our creativity as researchers? Shouldn’t we focus on “good” idea?
 • In engineering, it is as “good” as it works
 • Everything else is marketing or academic hype
• Shouldn’t we work, as researchers, on future problems the industry will face?
 • How can anybody claim to know future needs without understanding current ones?
Summary

• Introduced a research paradigm & process, and general lessons learned that can be useful to other researchers

• Research is coupled with knowledge transfer

• It promotes intertwining of research and industrial innovation to increase the impact of research

• Emphasis is placed on early involvement of industry
 • This increases chances of impact and adoption, mentoring opportunities, and creates a sense of ownership

• Work to be viewed as a step towards reducing the gap between software engineering research and practice
Thank you!

Questions?

Contact Info:
Lionel Briand
lionel.briand@uni.lu

Software Verification and Validation Laboratory (http://www.svv.lu)
Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg
References on MDE Adoption and Transfer

Selected Personal References

Selected Personal References (cont.)

• Razieh Behjati, Tao Yue, Lionel C. Briand: A Modeling Approach to Support the Similarity-Based Reuse of Configuration Data. MoDELS 2012: 497-513